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LETTER TO THE EDITOR 

A test for hyperscaling violation in the three-dimensional 
Ising model? 
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t Department of Physics, Indiana University, Bloomington, IN 47405, USA 
§ Theoretical Division, Los Alamos National Laboratory, University of California, Los 
Alamos, NM 87545, USA 

Received 17 August 1982 

Abstract. Monte Carlo methods are used to compute the renormalised coupling constant 
of the three-dimensional Ising model for different values of the correlation length. For 
an appropriate choice of parameters the correlation length scales like N for a lattice with 
N 3  sites. By increasing N from N = 3 to N = 60, we observed a systematic downward 
trend by more than twice the statistical error for a quantity which should be constant if 
hyperscaling is valid. 

A recent high-temperature analysis of the three-dimensional Ising model by Baker 
and Kincaid (1981) shows a small but persistent violation in certain scaling relations 
among critical exponents. The major uncertainty in these calculations is the extrapola- 
tion of the correlation length series from small to large 4’. This is accomplished by 
using Pad6 approximant techniques to resum a truncated power series in inverse 
temperature into a form that exposes the singular behaviour of 5’ near the critical point. 

An important input into this resummation was the parametrisation of the correla- 
tion length in the scaling region. Although the leading singularity is expected to 
diverge like a power, there are few constraints on the number and variety of weaker 
singularities in 5’. Nickel (1982) has proposed that in addition to the leading scaling 
term there is a cut structure in 4’ which produces significant corrections to the previous 
results of Baker and Kincaid (1981). In the analysis by Nickel all scaling violations 
seem to disappear to the order calculated. An additional study (McKenzie and 
Lookman 1982), based on an examination of the behaviour of the spatial behaviour 
of the series coefficients of the spin-spin correlation function, concludes that the 
numerical data do not support the hyperscaling relation dv = 2 -a in three dimensions. 

Although scaling may indeed hold for the three-dimensional Ising model, clearly 
another approach is needed to resolve the issue. In this article we use Monte Carlo 
methods to evaluate thermodynamic quantities numerically as a function of lattice 
size. By increasing N we can study the approach to scaling. An important feature 
about Monte Carlo is that thermodynamic averages are determined at least in theory 
without resorting to approximation schemes. The errors we encounter in practice are 
easier to analyse since they are statistical in nature. For the range of correlation 
lengths we studied, we believe that Monte Carlo provides a reliable non-perturbative 
guide to the physics. 

i Work supported in part by the US Department of Energy. 
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The standard spin-; Ising model is defined by the partition function 

where the Ising Hamiltonian consists of a sum over nearest-neighbour spin pairs with 
p = J / k T  and the interaction of all the spins in a constant magnetic field h. We have 
incorporated the temperature dependence into the Hamiltonian and J is the exchange 
energy. The spins are defined on lattice sites in a d -dimensional cubical crystal, where 
each S ( i )  can take two values denoted by +1 and -1. Given a polynomial of spin 
variables F ( S 1 ,  Sz, , . . , Si),  its connected average value is obtained from 

(2) 

In terms of 2, and the Hamiltonian H, the unsubtracted average value is defined by 

( F h  = F ( S / S h l ,  S I S h z ,  . . . , S / S h 3 )  In Z(p ,  h ) .  

( F )  =z-’ F(s’ ,  sZ, . . . , si) exp(-N). (3) 

From now on both (F) ,  and ( F )  will be evaluated at h = 0 unless otherwise indicated. 
The magnetisation in a weak field, above the critical temperature, can be written 

in terms of connected cumulant averages as 

n = ~  (2n  + 1)! C 

Each cumulant average is extensive. The n = O  term in (4) defines the zero field 
susceptibility 

which is expected to diverge as ,y - (pc - @)-’ near the critical point pc. The divergences 
of the high-order correlations in (4) define the gap exponents Azn, by the relation for 
n s l  

The correlation length [ in units of the lattice spacing is defined as 

5’ = M z / ( ~ ~ x  1 (7) 

where M z  is the second spin moment 

The correlation length is a measure of the spin-spin correlation in the lattice and is 
expected to diverge at the critical point as 6 - (& -p)-”.  

If we assume that [ is the only relevant lengthscale for physical quantities near 
the critical point (Fisher 1967), then the behaviour of all the n > O  terms in (4) is 
determined by dimensional arguments. We shall define as physikal any scale-invariant 
function of the spin variables. One such class of functions are the ratios of cumulants 
given by 
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where the volume dependence of Rn+l  - V-”. Since the ratio of cumulants is 
dimensionless, the scaling hypothesis predicts that as 6’ becomes large compared with 
the lattice spacing 

Rn+1+ k n t n d /  V ”  (10) 
where k ,  is some numerical constant. Combining the known divergences of ,y and 6 
with equation (lo), we find that the cumulants diverge as 

From (6) and (11) we finally obtain the hyperscaling relations among the critical 
exponents 

(12) 

where A = limn+oo Az,. 
Equation (12) is rigorously known as an inequality (Baker 1968, Schrader 1976, 

Baker and Krinsky 1977), 2A2, s 2A s y + dv, since multi-spin correlations cannot 
extend over a larger range than the pair correlations. The simplest test of hyperscaling 
is based on the calculation of R Z ,  or equivalently, the renormalised coupling constant 
defined by 

2A2, = 2A= y + d v ,  

where for unit lattice spacing V = N d .  If the exact renormalisation group equations 
are correct then (12) must be satisfied and the constants k ,  are universal (depending 
only on the dimension d and the internal symmetry of the Hamiltonian) (Fisher 1967, 
Kadanoff 1971, 1976). 

Physical crystals have a large but finite number of spins and for a finite system 
our order parameters can never become singular. It is clear since 0 S (SiSj> s 1 that 
for a finite-size system the correlation length can never become larger than the size 
of our box, that is, 6 C N.  Nevertheless, we can examine the approach to the infinite- 
volume limit by increasing N with the correlation length parametrised as 

6 = CN, (14) 
where c is a dimensionless constant satisfying c < 1. In a field theory c = l /mRL,  
where mR is a renormalised mass and L is the fixed, physical length of the system. 
As we increase the size of our crystal, keeping c fixed, we can solve (7) for the value 
p which satisfies (14). In the limit N + a3 we are obviously driven to the critical point 
of the king model so p+Pc. Near the critical point, I&-pI << 1, gR should behave as 

while 

6 ( P ) - ( P c - P ) - ” .  (16) 
Using (14) and (16) to write (Pc-p) as N-l’”, we obtain a scaling formula for the 
coupling as a function of the lattice size 

where w *  = ( y  + d v  - 2 A ) l v .  The critical exponent w *  is often referred to as the 
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anomalous dimension and satisfies the inequality U* 0 (Schrader 1976, Baker and 
Krinsky 1977). If hyperscaling holds, then U* must be identically zero and g R  

approaches a universal constant as N + CO, otherwise g R  vanishes in the infinite-volume 
limit. 

The actual value of c in (14) is arbitrary, since in theory we can choose N large 
enough so that /&-PI<< 1 is satisfied. The larger the value of c the faster the 
convergence to the scaling region. This effect can be important when limitations in 
size are considered. To minimise finite-size effects, however, we would like to make 
c as small as possible. Our choice for c will be a compromise between these two 
requirements. In practice, c is fitted by comparing gR versus 5’ for strong coupling 
perturbation theory with our numerical simulations. The convergence of a strong 
coupling expansion with a finite number of terms is expected to be best when N is small. 

We evaluate the cumulant averages and the second spin moment by a Monte Carlo 
procedure. The outline of the method we use is standard. Starting with some 
conveniently chosen initial configuration of spin variables S ( i ) ,  we sweep through 
the lattice, updating each S ( i )  according to a certain random algorithm. The result 
of each complete sweep is counted as a single new configuration. For a correctly 
chosen updating algorithm, the ensemble of configurations generated in this way gives 
a finite sequence of occurrences of random lattice spin variables distributed according 
to the probability 2-’ exp(-H). The ensemble average of F then approaches (F) in 
equation (3) as the size of the ensemble approaches infinity. 

We used the heat bath method of Creutz (1979a, b) as our Monte Carlo algorithm 
to update the spin variables in the lattice. To obtain an updated spin variable at site 
i, we compute the local Boltzmann distribution: 

P + ( s ~ )  = eAi/(eAb + 
P a = {  P-(Si )  = 1 - P+(S , )  

where P, is the probability that S ( i )  is up, P- 
and the variable A is computed by adding all 
site i 

d 

f i= l  
A i = p  ( S ( i + e , ) + S ( i - e , ) ) .  

is the probability that S ( i )  is down, 
the nearest-neighbour spins around 

Choosing a random number r uniformly distributed on the unit interval, we set S ( i )  = +1 
if r s P+, otherwise S ( i )  = -1. By sweeping once through the entire lattice updating 
every spin in this way, we generate one new spin configuration for our ensemble. 

After updating all the S ( i ) ,  the Fourier transform of the new spin field is constructed 
at zero momentum 

$(O)  = 1 S ( i ) .  
i 

Taking ensemble averages of (s(0))” for various n, we obtain values for the cumulants 
in (4). The previous definition for the correlation length, however, must be modified 
for a finite-size lattice with periodic boundary conditions. We use the definition of 
5’ of Cooper et a1 (1982), 

where S ( k )  is the Fourier transform of the spin field at momentum 6 = ( 2 7 ~ / N ,  0,O). 
Equation (21) is exact for a Gaussian model in any dimension and an Ising model in 
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one dimension provided l? is replaced by 4 sin2(&). For N >>t, (21) reduces to the 
infinite-volume definition of the correlation length. 

It is important to stress that for a finite-volume system, (8) and (21) are in general 
not the same. Nevertheless, (21) is invariant under the rescalings {S i }+  {Si} = Z”z{Si}, 
and so tF defines another physical length. In fact, 5~ must scale, by dimensional 
arguments, like 

6 F  = tF(k‘!) * (22) 

Now if we make 5 satisfy (14), then & F = F ( 2 d ) [ - N  where N-”“ - (pc-p) .  Thus 
replacing 5 by tF in equation (13) does not change how g R  scales with N, even though 
the coupling and correlation length may be distorted by finite-size effects! From now 
on we will drop the subscript on & unless the context is unclear. A Monte Carlo 
evaluation of g R  is now straightforward. 

The amount of computer time required to generate a new spin configuration is 
proportional to the update time,  AT^, for a‘single spin. Minimising  AT^ becomes an 
important cost consideration if we wish to perform computer simulations on large 
lattices. For this reason it was extremely useful to reparametrise each spin variable 
as S(i) = 2X(i)-  1, where the corresponding X’s  are either 1 or 0. Since each X ( i )  
requires only one binary digit to record the value of a spin, it is possible to record 
the values of many spins in the same computer word. If this packing of information 
is done according to the multi-spin coding prescription of Jacobs and Rebbi (1981), 
then beyond reducing memory requirements it also allows arithmetic operations 
involving many spins to be performed at once. For example, the index 

which runs from 1 to 2d + 1 can be computed for several different sites at once. If 
we construct an array of probabilities given by 

P+(J)  = 1/{1+ exp[4p(J - d - 1 j]} (24) 

the correct probability factor for site i is just P+(Ji). Since an array call to a small 
array is much faster than calculating P+ every time we update a spin, we can use a 
table look-up method with multi-spin coding to parallel process the updating of spins 
on the lattice. Due to the simplicity of this updating procedure, we were able to 
optimise this portion of our program by writing it in assembly language. As a result 
of all these steps AT, was estimated to be 0.4 microseconds on a CDC 7600 computer. 
We used of the order of 100 hours of 7600 time to measure accurately gR for different 
values of 6. 

We now present our numerical results for the three-dimensional Ising model. 
Working first on small lattices of N = 3 and 4, we measured g R  for different values 
of c. By comparing these results with high-temperature and strong coupling predictions 
for the same range of 6, we found that finite-size effects were made small (less than 
5 to 10 per cent) for c < 0.3. Also in previous work (Cooper et a1 1982) in two 
dimensions, a value of ( t / N ) ’  = & was found to be satisfactory, but ( t / N ) 2  = &showed 
slight finite-size effects. Similarly in previous work (Freedman er a1 1982) in three 
dimensions, good results which compared well with the Callan-Symanzik predictions 
of g R  and Wegner’s correction-to-scaling index, w ,  were obtained with (5 /N)3  = 0.021, 
which corresponds to c -0.28. It appears that the ratio of the correlated volume to 
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the total volume is the important practical criterion for g R .  Choosing c = 0.275, we 
used (14) to eliminate N in favour of 6. Typically five values of p were tried before 
5 was reproduced to within a few per cent for each N. Table 1 shows p versus N for 
N = 3, 6, 12, 24 and 60. High-temperature expansions yield pc- 0.2217. Knowing 
p for each N, we computed the corresponding renormalised coupling constant g R ( 6 ) .  
Table 1 shows gR versus t2 from our Monte Carlo simulations. Table 2 shows the 
results from the high-temperature series analysis by Baker and Kincaid (198 1) and 
the strong coupling analysis of Baker et a1 (1981) over a similar range of correlation 
lengths. Both Monte Carlo and high-temperature investigations show a region of 
small 6 in which the coupling stabilises around the value g R  = 25. For 6 larger than 
6.5 the renormalised coupling decreases with an apparent critical exponent of w *  - 0.2. 
When at most six internal lines are included in the strong coupling expansion, gR is 
predicted to be 28.4 in the limit 6 + 00 (Baker et a1 1981, Bender er a1 1979). 

Table 1. Monte Carlo data for g R  versus lattice size N ,  inverse temperature p, and 
correlation length 5. 

3 0.1720 0.68 42.36* 1.8t 
6 0.1950 2.72 27 .81  1.0 

12 0.2120 10.89 25.0 * 0.9 
24 0.2170 43.56 24.2 1 0.7 
40 0.2200 121.00 22.3 rt 0.7 
60 0.2208 272.25 19 .210 .5  

~~~~ ~~ 

t Strong coupling predicts g R =  44.74 for t2= 0.68. 

Table 2. High-temperature? and strong coupling$ estimates for g R  versus 5. 

t2  gR(HT) gR(SC) 

1 38.80 0.05 39.75 
4 29.50 * 0.05 31.41 

16 25.5 10 .10  29.18 
32 24 .011 .0  28.81 
64 22 .811 .2  28.62 

256 2 0 . 6 i  1.8 28.47 

t From the analysis in Baker and Kincaid (1981). 
$ From the analysis in Baker et al (1981). 

A major difficulty in studying the behaviour of g R ( t 2 )  on significantly larger lattices 
would be the enormous size of our ensemblest. On a 6 x 6 ~ 6  lattice we used five 
independent subensembles each with 30 000 spin configurations to measure g R  to - 5 % .  
In contrast, each subensemble for a 60 x 60 x 60 lattice required 300 000 spin configur- 
ations to achieve the same accuracy. The longer ‘time’ in the Markov chain over 
which we sampled spin configurations was due primarily to the critical slowing down 

t A fast processor for Monte Carlo simulations of the three-dimensional Ising model is being developed 
at Santa Barbara which will update 30 million spins per second on a 64 x 64 x 64 lattice. For details see 
Pearson etal (1981). 
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of the crystal as we approached the critical point. Typically 20% of each run was 
discarded to get into equilibrium. 

In conclusion, we have tested hyperscaling in the three-dimensional Ising model 
by measuring the renormalised coupling constant as a function of correlation length. 
The major difficulty in comparing our numbers with other studies is the distortion of 
gR and 5 caused by our working in a finite volume, relative to the renormalised mass. 
We estimate this to be -10% effect. However, the finite-size scaling formula for gR, 
and hence the anomalous dimension, is unaffected by our choice for c. Our Monte 
Carlo data show a consistent downward trend in g R  as we increased N. For lattices 
with N =s 60 we observed no stabilisation of the coupling. We conclude that larger 
lattices are required to see hyperscaling in these numerical simulations, if it is to be 
seen at all. Finally, the large value for g R  predicted by strong coupling as 6 + m was 
probably due to the shortness of the series used to Pad6 g R  and 6. 

We are indebted to the computer division at LASL and the high-energy experimental 
group at Indiana University for computer time, to W Gibbs and T Sulanke for assistance 
in optimising our programs, and to D Campbell, F Cooper, D Preston and P Smolensky 
for valuable conversations. One of us (BAF) is most appreciative of the support and 
hospitality of the Los Alamos Theoretical Division during the course of this project. 
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